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Dear Editor,                                                                                                              31 October, 2024 

 

I am writing to submit a research article entitled " An Automatic and Speech-based Cross-Lingual 

Classification Framework for Early Screening of Cognitive Impairment " to the special issue named 

Spotlight on Alzheimer’s disease and related dementias research in East Asia for your kind consideration 

for publication in Alzheimer's & Dementia. 

 

In this paper, we construct a novel framework that leverages several AI methods for automatically screening 

cognitive impairment (CI) based on the Cookie Theft picture description task with a multilingual dataset. 

It holds a high potential for clinical application in early AD detection as it’s fully automatic and has 

achieved high performance with 74% in accuracy and 75% in AUC in the external cross-lingual Chinese 

validation experiment, excels in distinguishing CI, and is beneficial for large-scale screening and self-

testing of CI, which will remind potential AD patients to undergo timely hospital-based examinations and 

therapies. 

 

We believe this manuscript is appropriate for publication by Alzheimer's Disease and Related Dementias 

Research in East Asia because it is highly relevant to the issue, highlighting the potential of non-invasive 

early screening through cross-lingual validation based on a 1-minute speech task.   

 

We confirm that this work is original and has not been published elsewhere, nor is it currently under 

consideration for publication elsewhere. 

 

Thank you for considering our manuscript for publication in this special issue. We look forward to the 

opportunity to share our research with your readers and contribute to the global dialogue on dementia 

research. 

 

Sincerely,  

 

Dr Xiang Fan 

Peking University Shenzhen Hospital  

Shenzhen, China 

fiona@link.cuhk.edu.hk 
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Abstract  

INTRODUCTION 

The use of speech data for distinguishing cognitive impairment (CI) is efficient and convenient for 

early screening of potential AD. However, few studies have developed available automated 

frameworks with the external cross-lingual Chinese validation.  

METHODS 

This study utilized speech data from the Cookie Theft description task, employing the ADReSSo 

dataset and the local Chinese dataset of the STAR cohort. We constructed an automated framework 

for CI screening, leveraging AI methods, including ASR, LLMs, and multiple types of machine 

learning classifiers. We used datasets in multiple languages and addressed the issue of language 

inconsistency. 

RESULTS 

Our framework achieved 74% in accuracy and 75% in AUC in the external cross-lingual Chinese 

validation experiment. We conducted an ablation study to demonstrate the necessity of each module 

within the framework. 

DISCUSSION 

The proposed framework provides fully automated assessments in distinguishing CI, making it 

highly beneficial for large-scale early screening and self-testing. 
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Background 

Alzheimer's disease (AD) is the most common type of dementia in aging people. According to the 

World Health Organization, the number of patients with dementia will rise from 55 million in 2019 

to 139 million in 2050, increasing rapidly with the global population age[1,2]. The typical 

characteristics of AD include the progressive degradation of memory, cognition, and motor skills, 

as well as the decline of speech, language, and logistics[3]. Though there is no effective cure for AD 

currently, clinical research has figured out that early detection could delay disease progression and 

provide preventive care[4]. Therefore, evaluating cognitive ability and detecting cognitive 

impairment (CI) on a widespread scale is crucial to help early screening. 

 

Traditional AD diagnostic methods concentrate on various biomarkers from cognitive assessments, 

cerebrospinal fluid (CSF), and neuroimaging techniques (e.g., magnetic resonance imaging (MRI) 

and positron emission tomography(PET))[5–8]. These methods are often expensive, time-

consuming, invasive, and require specialized equipment, making them impractical for widespread 

use[9]. It is neither feasible nor affordable to use each of the above examinations for large-scale 

screenings. An easy, quick, automatic, and user-friendly framework is necessary for screening and 

selecting potential AD individuals to undergo timely hospital-based examinations and therapies. 

 

Speech reflects cognitive functions, including attention, memory[10], idea formation, and the 

translation of thoughts into coherent articulation[11]. It shows significant potential for analyzing 

and understanding cognitive processes in the early stages[12]. In various language tasks, patients 

with AD demonstrate distinct performance patterns compared to healthy individuals[13], notably 
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marked by a reduction in discourse complexity and connected speech—key symptoms of AD [14–

16]. Language impairment often emerges in the early stages of the disease[17], making it a 

promising indicator for early diagnosis. Consequently, utilizing audio analysis to detect AD is 

particularly valuable, with the advantage of being non-intrusive, cost-effective, and more scalable. 

Speech-based automatic AD diagnosis has risen and developed quickly recently, represented by 

ADReSSo challenges[18,19]. Many researchers have extracted various acoustic and linguistic 

features [20,21] and built speech-based AD detection systems using machine learning algorithms 

from spontaneous speech [22–32]. Previous studies have achieved available performance in 

detection frameworks based on vocal features [22,23], lexical features [24] , and vocal-lexical fusion 

features[25]. Kong et al. [22] developed an automatic detection pipeline based on vocal features and 

achieved an accuracy of 80%. Fraser et al.[23] developed a binary classification model with 35 top-

ranked features and achieved 82% average accuracy. Another approach used a speech recognition 

and translation model and achieved 84.41% accuracy in the ADReSSo test set  [24]. Linguistic and 

acoustic features were combined to predict cognitive impairment and achieved an AUC of 94%[25], 

and are combined to build an explainable classification model[26]. 

 

As Natural Language Preprocess (NLP) has shown reliable performance in health care[33], and 

Automatic Speech Recognition (ASR) has strong performance in transcription, several researchers 

used language models combined with ASR to extract linguistic features automatically. In a previous 

study, ASR and fine-tuned embedding models achieved high accuracy in the ADReSS20 

challenge[27,28]. Many researchers also leveraged ASR, language model for embedding, and 

different classifiers to build the whole framework[29–32]. However, most of these studies were 
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limited by using relatively small sample sizes of clinical populations, using single-language datasets, 

and often faced data scarcity issues[27]. Some studies relied on expensive handcrafted features 

(including manual transcription)[23], which hinder its implication in a large-scale setting. Besides, 

very few researchers included mild cognitive impairment (MCI) cases in their studies[15,34], which 

restricts the application in early screening. 

 

In this study, we constructed an automatic framework for early screening CI based on voice 

recording without manual feature extraction. We utilized datasets in multiple languages to address 

the data deficiency problem. This study aims to develop a robust, automatic early screening 

framework of CI that is easy to deploy, requires no specialized equipment, and is suitable for 

widespread use. It focuses on detecting CI and facilitating large-scale early screening. The proposed 

framework uses machine learning techniques to take Cookie Theft picture description task speech 

as input and predicts the likelihood of CI. We leveraged ASR for transcription, LLM for translation 

and embedding, and different classical machine learning classifiers and deep learning neural 

networks for classification. We rigorously evaluated our approach on public and local datasets and 

achieved promising performance. The results highlighted the challenges and opportunities in 

building a cross-linguistic diagnostic framework for large-scale early screening and self-testing CI. 

 

Methods 

2.1 Datasets 

This study utilized two datasets for CI screening: the ADReSSo[19] Challenge dataset and the 

dataset from the Shenzhen Multimodal Aging Research (STAR) cohort. The ADReSSo dataset is 
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extracted from the Cookie Theft picture description task of the Pitt Corpus in the DementiaBank 

database [35]. It ensures balanced distributions across age, sex, and diagnosis. Each entry in the 

dataset includes a Cookie Theft storytelling speech and an associated binary label. The training set 

comprises 166 participants, of which 87 are diagnosed with AD and 79 are non-AD. The local 

participants in the STAR cohort were recruited from memory clinics and poster advertisements at 

Peking University Shenzhen Hospital, China. Participants in the STAR cohort included those 

diagnosed with CI and cognitively unimpaired (CU) as controls. The local voice dataset mirrors the 

same structure with speech recordings of the Cookie Theft picture description task, binary clinical 

labels (i.e., CI and CU), demographic information such as age and sex, neuropsychology scale 

assessments, and so on. All procedures in this research were conducted following the Declaration 

of Helsinki and were approved by the Ethics Committee of Peking University Hospital (No.2022-

160-01). Written informed consent was obtained from each participant before their inclusion in the 

study. Additionally, this study was registered with the Chinese Clinical Trial Registry (ChiCTR; 

ChiCTR2200066700). Table 1 presents the participant's characteristics, including self-reported sex, 

age statistics, education status, MMSE, and MoCA. 

 

2.2 Framework Construction 

The proposed CI screening framework was based on the audio recordings from the Cookie Theft 

picture description task. An ASR system was incorporated to transcribe all speech recordings to text 

in data preparation. Then, we translated the text into Chinese based on the LLM GLM-4 model. 

After that, we used a large language embedding model to extract linguistic features from the text 

for embedding generation. At last, the discriminative embedding features were fed into multiple 
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classification components. The pipeline of our proposed CI screening framework is shown in Figure 

1. 

 

2.2.1 ASR For Automatic Transcription 

To enable automatic transcription and enhance the framework’s applicability, we adopted the 

Whisper model[36] for speech recognition. Whisper is a transformer-based multilingual speech 

recognition and translation model trained on 680,000 hours of supervised audio data, enabling 

robust performance in diverse languages like English and Chinese. We selected the medium-sized 

model (769M parameters) to balance accuracy and performance. The Whisper model was used to 

transcribe the storytelling speech into text automatically as the foundation for subsequent processing 

steps.  

 

2.2.2 LLM for Translation  

To address the cross-lingual challenges across datasets, we translated the ADReSSo transcriptions 

into Chinese using GLM-4 [37], a transformer model pre-trained on ten trillion tokens in both 

Chinese and English. GLM-4 employs techniques such as Supervised Fine-Tuning (SFT) and 

Reinforcement Learning with Human Feedback (RLHF), which have achieved remarkable 

performance in the Chinese language alignment task. This capability ensured linguistic consistency 

between the ADReSSo and local Chinese datasets, facilitating effective feature extraction and robust 

classification. During the translation process, we set the 𝑡𝑜𝑝_𝑝 parameter to 0.1 and the temperature 

to 0.15.  
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2.2.3 LLM for Embedding Feature Extraction 

To obtain discriminative text features automatically, we utilized the large language model, 

Embedding-3 from Zhipu AI[38], to convert entire sentences into dense vector representations (i.e., 

embeddings). The extracted text embeddings implied essential linguistic features, the meaning, and 

the semantics within the text. By encoding complex language structures and subtle semantic nuances, 

we found that the Embedding-3 model can be particularly useful for CI screening as early diagnosis 

hinges on a detailed understanding of linguistic patterns.  

We mapped each speech segment to a 512-dimensional vector, encapsulating the linguistic attributes 

critical for screening CI. The high-dimensional embeddings enabled discriminative text feature 

extraction and thus ensured the comprehensive inputs for the following classifications. 

 

2.2.4 Classifiers 

We formulated the CI screening task as a binary classification problem, distinguishing between 

participants with AD (label 1) and those without it (label 0). To this end, we explored a range of 

machine learning classifiers, including: 

 Logistic Regression (LR), a classical binary classification model;  

 Random Forest (RF)[39] aggregates predictions from multiple decision trees with strong 

robustness and generalization. We configured the model with 100 trees, a minimum sample 

split of 2, a minimum sample leaf of 1, and no restriction on maximum depth; 

 Support Vector Machine (SVM)[40] maximizes the margin between classes, making it 

particularly effective for small sample sizes. In this work, we performed SVM with the radial 

basis function kernel (i.e., Gaussian kernel) with regularization parameter as 1.0 and kernel 
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parameter 𝛾 = 1
2𝜎2⁄ , where 𝜎 indicates standard deviation. 

 Extreme Gradient Boosting (XGBoost)[41] utilizes boosting techniques with decision trees, 

achieving both efficiency and high accuracy. The model parameters were set to 100 trees, a 

learning rate of 0.3, a maximum depth of 6, and a subsample ratio of 1. 

 Multi-Layer Perceptron (MLP) uses embeddings feature extracted from LLM as an input layer, 

two hidden layers with 128 and 64 units using ReLU activation, and an output layer with a 

Sigmoid activation for probability scoring. 

 Multi-Layer Perceptron with a Transformer encoder block (MLP-Trans) uses embeddings 

feature extracted from LLM as an input layer, a hidden layer with 128 units using ReLU 

activation, a Transformer encoder block with 8 attention heads, a second hidden layer with 64 

units, and an output layer with a Sigmoid activation for probability scoring. 

 

We conducted two sets of experiments: 

1. Local validation, where both training and evaluation were performed on local data using 

cross-validation (𝑘 = 5). This experiment indicated the effectiveness of our approach in a 

single-language setting. To ensure robustness, we randomly split the data 100 times for 

each cross-validation with different random seeds and calculated the mean result as the 

final measure of the model performance. 

2. Cross-lingual validation, where we trained the models on the ADReSSo (English) and 

evaluated performance on the local dataset (Chinese). This experiment aimed to assess the 

robustness of the models across different languages, which is crucial for broader 

applicability and coping with data scarcity.  
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We reported six metrics of the experimental results for quantitative measurement, including 

accuracy (ACC), precision (PRE), recall (REC), F1 score, the receiver operating characteristic 

(ROC) curve, and area under the curve (AUC) for the positive class (CI). This thorough approach 

enabled the comparison between classical machine learning methods and deep neural networks and 

thus revealed the model strengths and limitations of different methods based on monolingual and 

cross-lingual contexts. 

 

2.3 Ablation Study 

We investigated the necessity of translation and the performance of the LLM within the entire cross-

lingual framework. We performed an ablation experiment to compare the performance of our 

framework with/without the translation procedure and illustrate the necessity of language translation 

for early AD screening. Moreover, we conducted an experiment by replacing the LLM Embedding-

3 with a much smaller pre-trained embedding model to reveal the importance of incorporating a 

large language embedding model for discriminative AD-related text feature extraction on both local 

and cross-lingual data.  

 

Results 

3.1 Monolingual Experiment: Performance on the Local Dataset with 

K-fold Cross-Validation 

Table 2 summarizes the performance of different classifiers on the local dataset under 5-fold cross-

validation. Each reported metric represents the mean across 100 random splits to ensure robust 
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evaluation. We also tried to evaluate different classifiers with the train-test split in Appendix A 

(Table A1). The first value in each cell indicates performance on the training set, while the second 

value corresponds to the test set. The distribution of accuracy and AUC for different classifiers are 

also shown in Figure 2. 

 

The results suggested that RF and XGBoost achieved best performance in nearly all metrics, 

especially in precision, recall, and F1 scores, and show signs of overfitting by achieving perfect 

performance in training and a significant decline in testing. LR, SVM, and MLP demonstrated stable 

performance in accuracy during training and testing without suffering from overfitting or 

underfitting. However, the near-zero results for precision, recall, and F1 score across these three 

methods indicated the class imbalance issue and the challenge of learning comparative patterns from 

the dataset. Moreover, although MLP-Trans performed better in testing than training in all 

evaluation metrics, the performance is still far from ideal, with underfitting during training. 

 

3.2 Cross-Lingual Experiment: Training on Public English Data and 

Testing on Local Chinese Data 

We conducted experiments where models were trained on the ADReSSo public English dataset and 

tested on the local Chinese dataset with different classifiers. We visualized the embedding using t-

SNE[42] and shown in Appendix B (Figure B1). The whole outcomes are summarized in Table 3, 

and accuracy and AUC for different classifiers are shown in Figure 2.  

 

From the results, we can see that RF consistently achieved the best overall performance across key 
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metrics: accuracy, precision, F1 score, and AUC. These results indicated that RF maintained a strong 

balance between identifying actual CI cases and minimizing false positives. While not excelling in 

precision, LR achieved the highest recall at 0.77, showing it was sensitive to CI cases. However, 

this higher sensitivity led to a drop in precision, resulting in a moderate F1 score of 0.52, reflecting 

the model’s tendency to over-predict CI cases. In contrast, models such as SVM, XGBoost, and 

MLP demonstrated relatively consistent but slightly lower performances in accuracy, F1 score, and 

AUC compared to RF. These models offered similar trade-offs between recall and precision, though 

they did not match the same level of balance across the metrics as RF.  Specifically, SVM and 

XGBoost performed well in the recall, but their lower precision led to a more modest overall F1 

performance. The MLP models, including the transformer variant, exhibited comparable results but 

did not outperform RF across most metrics. 

 

Overall, ensemble models that combine the predictions from multiple decision trees are capable of 

effectively reducing both bias and variance in individual models and enhancing robustness in 

capturing complex patterns. This approach enabled the identification of a broader range of data 

features, particularly in cases of class imbalance, where the diversity of different trees assists in 

recognizing potential patterns in minority class samples. Furthermore, the introduction of 

randomness in ensemble learning helps to improve generalization capabilities. For CI screening, the 

data is often scarce and imbalanced, while generated embeddings contain rich textual information. 

Thus, RF is particularly suitable for CI screening in our task. 

 

3.3 Ablation Study 
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In this experiment, we compared the framework’s performance with and without translation to 

determine the necessity of translation. The results demonstrated that when language consistency 

was not maintained—i.e., when the ADReSSo dataset remained in English—there was a marked 

degradation in performance. To explore the impact of different language models, we experimented 

with MiniLM[43], a much smaller and lightweight embedding model, for cross-lingual datasets. 

MiniLM has fewer parameters and a smaller architecture, making it computationally efficient, but 

lacks capacity for complex feature extraction.  

 

The performance of our framework with RF classifier without the translation procedure and with 

MiniLM instead of Embedding-3 is shown in Figure 3. The detailed performance of each classifier 

without translation and with MiniLM for embedding is shown in Table 4. The first value in each 

cell indicates performance without the translation, while the second value corresponds to using 

MiniLM. 

 

3.3.1 Comparison of Framework Performance with and without Translation 

Across all six models, the results demonstrated that using the translated data led to a substantial 

improvement in performance. Specifically, the accuracy of models trained on the translated data 

was approximately twice that of models trained on the non-translated data, with precision increasing 

by about 1.5 times. It suggested that models trained on translated data were better at correctly 

identifying AD patients while reducing the number of false positives (non-AD cases incorrectly 

classified as AD). A decline in recall was observed when using the translated dataset, indicating that 

the translated models may miss some AD cases, leading to a higher number of false negatives. This 
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decline was likely due to discrepancies in linguistic structure and semantic features between the two 

languages, which affected the framework's ability to generalize across datasets. In contrast, 

translating the English text into Chinese ensured that both datasets were processed uniformly, 

improving feature extraction and enhancing classification accuracy. This comparison highlighted 

the importance of language alignment in cross-linguistic tasks, particularly in methods that rely on 

subtle linguistic features for the CI screening task.  

 

3.3.2 Comparison of Framework Performance with MiniLM and Embedding-3 

From the results, Embedding-3 has demonstrated its ability to improve precision, F1, and AUC 

across most classifiers, particularly with RF and XGBoost. The remarkable performance of 

Embedding-3 can be attributed to its superior ability to extract linguistic information and retain 

more intricate details from the input data. This level of detail is crucial when dealing with complex 

language structures as it allows the model to better understand nuances and contextual meanings 

that may be lost with less effective embeddings. 

Although MiniLM achieved higher recall with several classifiers (e.g., LR), its increases in 

sensitivity came at the cost of precision and led to moderate F1 scores. In contrast, the superior AUC 

of Embedding-3 underscores its capacity to generalize more effectively across diverse datasets, 

especially for ensemble-based classifiers. This capability is significant, as ensemble methods like 

RF leverage the strengths of multiple models, combining their predictions to enhance overall 

performance. 

 

The combination of the powerful ensemble classifiers (e.g., RF) and the detailed embeddings from 
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Embedding-3 results in a robust framework for capturing relevant patterns in translated texts. By 

effectively integrating detailed linguistic features with the decision-making capabilities of RF, the 

proposed framework can identify subtle patterns that contribute to improved classification 

performance. This combination not only addressed the challenges posed by cross-linguistic 

variations but also enhanced the model's ability to accurately classify instances, resulting in higher 

overall performance metrics. Hence, this method can be shown as a promising approach to tackling 

the complexities of language processing in different languages for the CI screening task.  

 

Discussion 

This study explored an innovative approach, using a cross-lingual dataset to automatically screen 

CI through a speech analysis framework by leveraging ASR and LLM for translation, the large 

language embedding model, and various classifiers. Due to its automatic ability and great 

performance in validation tests, the proposed framework is suitable for large-scale population-based 

screening and is available for self-testing of CI, which is beneficial for the eventual timely therapy 

of AD patients [44]. This framework could be widely implemented in resource-limited regions, 

significantly aiding populations needing accessible diagnostic tools and bringing substantial 

economic benefits. AI-based CI detection tools can be greatly cost-saving, and our work has broad 

prospects for future applications. This section discusses our approach's key findings, strengths, 

limitations, and implications, offering insight into future research directions. 

 

4.1 Impact of Translation on Performance 

Our experiments revealed that maintaining linguistic consistency between datasets significantly 
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improved classification performance. Specifically, translating the ADReSSo dataset from English 

to Chinese led to better feature extraction and classification accuracy. In contrast, the framework 

performance declined markedly when the ADReSSo dataset remained in English. Though it has 

been shown that multilingual sentence encoders could achieve great performance,[45]the 

differences in linguistic structure, syntax, and semantics between English and Chinese still exist and 

cause degradation, which hinders the framework’s ability to generalize across datasets. These 

findings highlight the importance of aligning linguistic features in multilingual contexts, especially 

when models rely on subtle language nuances for binary classification tasks. 

 

4.2 Impact of LLM Ability on Performance 

We observed that Embedding-3, a sentence embedding model from Zhipu AI, consistently 

outperformed MiniLM in capturing the linguistic features necessary for CI screening. MiniLM, 

although computationally efficient with a smaller architecture, struggled to retain the complex 

semantic and contextual nuances required for early diagnosis. In contrast, Embedding-3’s high-

dimensional (512) vectors encapsulated essential linguistic information, contributing to improved 

classifier performance. This comparison emphasizes the need for powerful embeddings when 

detecting cognitive impairments like AD. 

 

4.3 Classifier Performance and Framework Robustness 

Among the classifiers tested, RF exhibited the most balanced performance across multiple metrics, 

achieving the highest AUC (0.74) and a reliable balance between precision (0.56) and F1 score 

(0.62). On the other hand, LR showed superior sensitivity, with a recall of 0.77, making it effective 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



for identifying CI cases, though at the cost of reduced precision. The neural network models, 

including the transformer-based architecture, demonstrated promising results but did not surpass the 

traditional machine learning models in this setting. These results suggest that ensemble learning 

techniques such as RF effectively capture patterns in linguistic data for CI screening. 

 

4.4 Cross-Dataset Evaluation and Generalization 

Training on the ADReSSo dataset and testing on the local dataset allowed us to evaluate the 

generalization capability of our framework. The cross-dataset evaluation underscored the challenges 

associated with dataset heterogeneity, especially when demographic factors and linguistic features 

differ. Despite these challenges, our framework maintained reasonable performance, affirming that 

combining powerful embeddings and robust classifiers can enhance generalization. 

 

4.5 Limitations and Future Directions 

While our approach shows promise, several limitations should be noted. First, although translating 

the ADReSSo dataset into Chinese improved performance, translation may introduce minor 

semantic shifts, potentially impacting subtle linguistic patterns. Second, the limited availability of 

AD patient data restricts the development of more sophisticated models, leaving significant room 

for performance improvements. Expanding the dataset with more AD samples and diverse linguistic 

inputs will be essential to enhance the robustness and generalization of the whole framework. 

Besides, this framework only uses linguistic features; we could design ways to combine acoustic 

features to achieve better performance. Expanding research across languages and dialects will also 

be crucial for building more inclusive and reliable diagnostic tools.   
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4.6 Conclusion 

Our study highlights the effectiveness of combining machine learning and the LLM as natural 

language processing techniques for CI screening. We emphasize the importance of linguistic 

alignment across datasets, the role of high-quality embeddings, and the utility of ensemble 

classifiers for robust performance. Addressing the limitations identified will pave the way for more 

efficient and reliable speech-based diagnostic tools in the future. Our findings contribute to the 

research on automatic and speech-based quick tasks, offering new cross-lingual framework for AI-

driven large-scale early screening, self-testing, and healthcare solutions. 

 

Appendix A: Performance on the Local Dataset with Train-

Test Split 

Table A1 summarizes the performance of different classifiers on the local dataset under train-test 

split. Each reported metric represents the mean across 100 random splits to ensure robust evaluation. 

The first value in each cell indicates performance on the training set, while the second value 

corresponds to the test set. 

 

Appendix B: Embedding Visualization 

To gain insights into the distribution of different labels in the embedding space, we applied t-SNE 

to reduce the high-dimensional embeddings to two dimensions and plotted the resulting data points 

as a scatter plot (Figure B1). The visualization showed that while there is some overlap between 

the different labels, the overall structure revealed two distinct clusters. This indicated that the 
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embeddings generated by the model generally capture meaningful semantic differences between the 

classes, providing a solid foundation for the subsequent classification tasks. 
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Figure 1: The pipeline of our framework. ASR, automatic speech recognition; LLM, large 

language model; XGBoost, extreme gradient boosting; RF, random forest; MLP, multiple-layer 

perception, CU, cognitively unimpaired; CI, cognitive impairment. 

Figure 2: The performance of different classifiers in Monolingual Experiment and Cross-Lingual 

Experiment. ACC, accuracy; AUC, area under the curve. LR, Logistic Regression; SVM, Support 

Vector Machine; RF, Random Forest; XGBoost, a Boosting; MLP, Multi-Layer Perceptron; MLP-

Trans, Multi-Layer Perceptron with Transformer architecture. 

Figure 3: Results of our ablation study for measuring the effectiveness of different settings using 

RF as the classifier. ACC, accuracy; PRE, precision; REC, recall; F1, F1 score; AUC, area under 

the curve. 

Figure B1: Scatter plot of the embedding space, the distribution of CI and CU. t-SNE, t-

Distributed Stochastic Neighbor Embedding; CU, cognitively unimpaired; CI, cognitive 

impairment. 
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Table 2 Average performance of classifiers on local data evaluated using 5-fold cross-validation, 

left for train and right for test.  

 ACC PRE REC F1 AUC 

LR 0.70/0.70 0.00/0.00 0.00/0.00 0.00/0.00 0.86/0.71 

SVM 0.70/0.70 0.00/0.00 0.00/0.00 0.00/0.00 0.94/0.68 

RF 1.00/0.74 1.00/0.66 1.00/0.31 1.00/0.40 1.00/0.73 

XGBoost 1.00/0.71 1.00/0.57 1.00/0.36 1.00/0.40 1.00/0.72 

MLP 0.70/0.70 0.07/0.00 0.01/0.00 0.01/0.00 0.50/0.71 

MLP-Trans 0.58/0.64 0.30/0.41 0.30/0.35 0.30/0.35 0.50/0.62 

Abbreviations: LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest;  

XGBoost, a Boosting; MLP, Multi-Layer Perceptron; MLP-Trans, Multi-Layer Perceptron with 

Transformer architecture; ACC, accuracy; PRE, precision; REC, recall; F1, F1 score, AUC, area  

under the curve 
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Table 3 The performance of classifiers on local data trained on public datasets.  

 ACC PRE REC F1 AUC 

LR 0.57 0.39 0.77 0.52 0.69 

SVM 0.62 0.42 0.66 0.51 0.70 

RF 0.74 0.56 0.69 0.62 0.75 

XGBoost 0.65 0.45 0.71 0.56 0.67 

MLP 0.63 0.42 0.57 0.48 0.68 

MLP-Trans 0.59 0.41 0.74 0.53 0.67 

Abbreviations: LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest;  

XGBoost, a Boosting; MLP, Multi-Layer Perceptron; MLP-Trans, Multi-Layer Perceptron with 

Transformer architecture; ACC, accuracy; PRE, precision; REC, recall; F1, F1 score, AUC, area  

under the curve 
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Table 4 The performance of classifiers on local data trained on public datasets, without 

translation(left) and using MiniLM(right). 

 ACC PRE REC F1 AUC 

LR 0.30/0.66 0.30/0.46 1.00/0.66 0.47/0.54 0.69/0.69 

SVM 0.30/0.6 0.30/0.42 1.00/0.69 0.47/0.52 0.65/0.69 

RF 0.32/0.47 0.31/0.32 1.00/0.66 0.47/0.43 0.52/0.60 

XGBoost 0.30/0.47 0.30/0.31 0.97/0.63 0.46/0.42 0.55/0.51 

MLP 0.30/0.66 0.30/0.46 0.97/0.63 0.46/0.53 0.65/0.66 

MLP-Trans 0.43/0.50 0.33/0.29 0.83/0.46 0.47/0.36 0.64/054 

Abbreviations: LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest;  

XGBoost, a Boosting; MLP, Multi-Layer Perceptron; MLP-Trans, Multi-Layer Perceptron with 

Transformer architecture; ACC, accuracy; PRE, precision; REC, recall; F1, F1 score, AUC, area  

under the curve 
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Table A1 Average performance of classifiers on local data, evaluated using a train-test split. 

Results are presented with training performance on the left and testing performance on the right.  

 ACC PRE REC F1 AUC 

LR 0.70/0.69 0.00/0.00 0.00/0.00 0.00/0.00 0.87/0.70 

SVM 0.70/0.69 0.00/0.00 0.00/0.00 0.00/0.00 0.94/0.66 

RF 1.00/0.72 1.00/0.69 1.00/0.27 1.00/0.36 1.00/0.72 

XGBoost 1.00/0.70 1.00/0.53 1.00/0.34 1.00/0.39 1.00/0.69 

MLP 0.70/0.69 0.07/0.01 0.01/0.00 0.02/0.00 0.50/0.70 

MLP-Trans 0.58/0.63 0.30/0.41 0.30/0.34 0.30/0.35 0.50/0.61 

Abbreviations: LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest;  

XGBoost, a Boosting; MLP, Multi-Layer Perceptron; MLP-Trans, Multi-Layer Perceptron with 

Transformer architecture; ACC, accuracy; PRE, precision; REC, recall; F1, F1 score, AUC, area  

under the curve 
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TABLE1 Characteristics in the STAR cohort 

 CU CI 

Number of subjects 80 35 

Sex(Male/Female) 31/49 12/23 

Age(Mean±SD) 62.09±0.64 64.73±1.17 

Education(Mean±SD) 13.70±0.27 10.08±0.69 

MMSE(Mean±SD) 28.68±0.14 25.36±0.60 

MoCA(Mean±SD) 26.30±0.22 18.24±0.73 

Abbreviations: MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; 

CU, cognitively unimpaired; CI, cognitive impairment. 
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Highlights： 

 Constructed a novel classification framework for distinguishing cognitive impairment (CI) 

from cognitively unimpaired (CU) using speech data from the Cookie Theft picture description 

task across different languages, achieving 74% in accuracy and 75% in AUC in the external 

cross-lingual validation experiment.  

 Leveraged AI methods, including Automatic Speech Recognition (ASR), Large Language 

Models (LLMs), and various machine learning classifiers, to develop an automatic framework 

for CI screening.  

 Developed a fully automatic assessment framework that excels in distinguishing CI, providing 

a valuable tool for large-scale early screening and self-testing of cognitive impairment.   
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Research in Context: 

Systematic review： 

Few studies have investigated available automated frameworks by confusing acoustic 

and linguistic features for early screening cognitive impartment (CI). Additionally, it 

also lacks cross-language attempts, caused by data scarcity and insufficient sample 

diversity. 

Interpretation： 

We developed a novel automated framework that combines the ASR method for speech 

transcription and large language model (LLM)-based module for linguistic feature 

extraction. Our findings, based on a multilingual dataset combined ADReSSo dataset 

(𝑛 = 166 ) and the SAAR Cohort (𝑛 = 115 ), demonstrate superior performance in 

machine learning (ML) classifiers, achieving 74% in accuracy and 75% in AUC in the 

external cross-lingual Chinese validation experiment. 

Future direction： 

Ahis study highlights the effectiveness of a framework consisting of LLMs and MLs 

for CI screening in multilingual scenarios. It contributes to developing a cost-effective, 

widely accessible way for large-scale early screening and self-testing of CI, offering 

some inspiration for AI-driven healthcare solutions. 
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